

## Water vapor in the upper troposphere and lower stratosphere Troy Thornberry



- UTLS water vapor is a significant feedback in the climate system
- Cirrus clouds play a significant role in the radiative balance of the Earth system
  - ➤ It is necessary to understand how UTLS water vapor and cirrus respond to climate changes in order to determine the magnitude of the feedback





- Inter-satellite water vapor measurement offsets and drifts have made it difficult to detect long-term trends in UTLS water vapor
- Longstanding in situ water vapor measurement discrepancies have created uncertainties in understanding of the microphysics related to cirrus formation

### **CSD UTLS Water Efforts**

Since 2008, scientists in CSD have worked to address the outstanding science needs related to water in the UTLS on two fronts:

- 1) Evaluation of satellite H<sub>2</sub>O data and meteorological reanalyses in order to construct large-scale, long-term records for trend analysis and radiative forcing calculations and related modeling activities
- 2) In situ measurement development, deployment, evaluation, calibration and intercomparison in order to constrain the uncertainty in UTLS water vapor to improve understanding of the microphysics of cirrus formation and TTL dehydration

# Satellite, Reanalysis Data and Modeling Activities and Accomplishments

- Modeling of the importance of UTLS water vapor in the climate system
  - Solomon et al., Science, 2010
  - Dessler et al., PNAS, 2013
- Development of the Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set
  - Synthesized consistent satellite record for use in interannual variability and trend analyses (S. Davis)





- Stratospheric water section of BAMS annual
   State of the Climate Report
- SPARC Water Vapour Assessment
  - K. Rosenlof co-lead author
- SPARC Reanalysis Intercomparison Project (S-RIP)
  - S. Davis chapter co-lead author



### In situ measurement activities/accomplishments

- Developed new methods for UTLS H<sub>2</sub>O measurement and calibration (Thornberry et al., AMT, 2013; Rollins et al., AMT, 2011)
- Participated in the NASA MACPEX campaign UTLS in situ water vapor intercomparison
  - ➤ Led the intercomparison analysis (Rollins et al., JGR, 2014)
- Laboratory study of the potential for HNO<sub>3</sub> interference with frost-point hygrometer measurements (Thornberry et al., AMT, 2011)
- Constructed a two-channel hygrometer for UTLS water vapor and cirrus IWC measurement (Thornberry et al., AMT, 2015)
  - Only in situ calibrated UTLS hygrometer
- Conducted extensive measurements of UTLS H<sub>2</sub>O and cirrus ice water content over the tropical Pacific during the NASA ATTREX campaign





#### Near future work

- Use ATTREX observations to calculate mass-dimensional relationship of TTL cirrus and parameterize T dependence of IWC
  - Important parameter for global models and satellite retrievals
- ☐ Compare observed vs reanalysis-derived dehydration
  - Constrain model treatment of TTL dehydration processes
- Investigate the microphysical and dynamical sources of inefficiency in the TTL dehydration process
  - Improve model parameterization of dehydration



